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Abstract. The impression gained from the literature published to date is that the spectrum of
the stadium billiard can be adequately described, semiclassically, by the Gutzwiller periodic orbit
trace formula together with a modified treatment of the marginally stable family of bouncing-ball
orbits. I show that this belief is erroneous. The Gutzwiller trace formula is not applicable for
the phase-space dynamicsnear the bouncing-ball orbits. Unstable periodic orbits close to the
marginally stable family in phase space cannot be treated as isolated stationary phase points when
approximating the trace of the Green’s function. Semiclassical contributions to the trace show
an h̄-dependent transition from hard chaos to integrable behaviour for trajectories approaching
the bouncing-ball orbits. A whole region in phase space surrounding the marginal stable family
acts, semiclassically, like a stable island with boundaries being explicitly ¯h-dependent. The
localized bouncing-ball states found in the billiard derive from this semiclassically stable island.
The bouncing-ball orbits themselves, however, do not contribute to individual eigenvalues in
the spectrum. An EBK-like quantization of the regular bouncing-ball eigenstates in the stadium
can be derived. The stadium billiard is thus an ideal model for studying the influence of almost
regular dynamics near marginally stable boundaries on quantum mechanics. The behaviour is
generically found at the border of classically stable islands in systems with a mixed phase-space
structure.

1. Introduction

The derivation of semiclassical periodic orbit formulae for the trace of the quantum Green’s
function led to a deeper understanding of the influence of classical dynamics on quantum
spectra. Closed periodic orbit expressions have been given by Gutzwiller [1] and Balian and
Bloch [2] for ‘hard-chaos’ systems and by Berry and Tabor [3, 4] for integrable dynamics.
Integrability and hard chaos represent the two extremes on the scale of possible Hamiltonian
dynamics. The term ‘hard chaos’ introduced by Gutzwiller [1] is, however, not well defined.
It implies, that all periodic orbits are unstable and ‘sufficiently’ isolated to allow for the
stationary phase approximations in the derivation of the trace formula. Hence, for lack of
a better definition, one might say that a system exhibits ‘hard chaos’ if the Gutzwiller trace
formula as it stands is the leading term in a semiclassical expansion in ¯h.

Neither integrability nor hard chaos is generic in low-dimensional bounded Hamiltonian
dynamics. The variety of classical systems proposed as testing models for the Gutzwiller
trace formula in the last decade exemplify the problem of finding ideal chaos in the sense
described above. Typical Hamiltonian systems show a mixture of the two extremes. Chaotic
regions in phase space (containing unstable periodic orbits only) are interspersed by stable
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islands, which themselves may have a complicated inner structure consisting of chaotic
bands and invariant tori. The ‘stable regions’ locally reflect almost integrable behaviour
in phase space and can be treated semiclassically by an Einstein–Brillouin–Keller (EBK)
approximation [1, 5, 6]. Semiclassical contributions to the trace of the Green’s function
from periodic orbits inside the stable islands are of modified Berry–Tabor type as has been
discussed in [7–11].

Much less is known about a semiclassical treatment of the transition region from the
stable island to the outer chaotic neighbourhood. The outer boundary acts as a classically
impenetrable wall in two degrees of freedom. A coupling between dynamically separated
regions can only be described by complex trajectories [2, 12, 13]. Although the outer
chaotic region contains (per definition) only unstable periodic orbits, it shows almost regular
behaviour near the stable components. The characteristics for this kind of regularity, also
called intermittency in the chaos literature [14], is a vanishing Liapunov exponent,λp, for
unstable periodic orbits approaching the island, i.e.

λp = log3p
Tp

→ 0 asTp →∞

where3p denotes the largest eigenvalue of the stability matrix (describing the linearized
dynamics in the neighbourhood of the periodic orbit) andTp is the period.

I will show that intermittency in bounded systems leads to leading-order corrections
in the Gutzwiller trace formula. Semiclassical contributions from (unstable) periodic orbits
approaching the boundary of a stable island show an ¯h-dependent transition from Gutzwiller
to Berry–Tabor-like behaviour. This allows one to extend the concept of EBK quantization
from a stable region over the marginal stable boundary into its ‘chaotic’ neighbourhood.

I will derive these results for a specific example, the quarter-stadium billiard (see
figure 2). This might appear surprising at first, because this billiard has been introduced as
an example of a dynamical system which is completely ergodic with a positive Liapunov
exponent [15]. The stadium billiard has thus been regarded as an ideal model for a ‘chaotic’
system. First indications for the validity of the random matrix conjecture relating the level
statistics of individual ‘chaotic’ systems to those of an ensemble of random matrices have
been found in this billiard [16–18]. Also the discovery of scarred wavefunctions [19] was
first made in this system. From then on, the classical and quantum aspects of the stadium
billiard were studied intensively both theoretically and in microwave experiments [20, 21],
making it a standard model in quantum chaology. The billiard dynamics possesses, however,
regularities which prevent it from being a hard-chaos system. The so-called bouncing-ball
orbits, i.e. the continuous family of periodic orbits running back and forth in the rectangle,
are marginally stable. Another peculiarity of the stadium is the existence of whispering-
gallery orbits accumulating at the boundary of the billiard. These orbits have a strong, non-
generic influence on the spectral statistics which causes deviations from the GOE predictions
[21]. Quantum eigenstates also exist, which are localized along the bouncing-ball orbits
(the bouncing-ball states), or along the boundary (the whispering-gallery states), in a much
more pronounced way than the scars found along other periodic orbits.

As a consequence, the stadium billiard is not an example of a hard-chaos billiard, but
may serve as an ideal model for systems exhibiting both regular and chaotic dynamics.
Though there is no stable island, the bouncing-ball orbits act as the boundary of a torus
enclosing an area with zero volume in phase space. This allows us to study pure boundary
effects without dealing with the inner structure of the island.

Semiclassical results obtained for hard-chaos systems suffer considerable changes when
dealing with intermittency as will be shown here. First of all, the contributions of the
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marginal stable family to the trace of the Green’s function need a special treatment [22, 23].
This is also true, however, for unstable periodic orbits close to the bouncing-ball family.
They can no longer be treated as isolated stationary phase points when approximating the
trace of the Green’s function at finite ¯h. As a consequence, the Gutzwiller periodic orbit
formula is not valid for the dynamics in a whole phase-space volume surrounding the
marginal stable family. The size of this volume is explicitly ¯h dependent and shrinks to
zero in the semiclassical limit.

Furthermore, standard semiclassical arguments referring to a cut-off in periodic-orbit
sums at a period given by the Heisenberg-timeτH [24] are not valid for intermittent systems.
Intermittency is related to a loss of internal time scales in the dynamics and infinitely long
orbits thus contribute dominantly to the semiclassical zeta function at finite ¯h. In particular,
the regular bouncing-ball states follow scaling laws for a cut-off in the orbit summation
different from the estimate given by the Berry–Keating resummation technique [24].

The article is organized as follows. In section 2, the contribution of the bouncing-ball
family to the trace of the Green’s function is discussed. The derivation follows mainly the
ideas developed in [22, 23] although here we do not deal with diffraction effects. It will be
shown that the bouncing-ball orbits give no contribution to individual eigenvalues of the
stadium billiard. In section 3, the Bogomolny transfer operator method [26] is introduced.
A Poincaŕe surface of section is defined, which allows us to study the near-bouncing-
ball dynamics, but explicitly excludes the bouncing-ball family. The Poincaré map in the
bouncing-ball limit is derived, which allows us to obtain the leading contributions to the
transfer operator for the bouncing-ball spectrum. An approximate EBK quantization of the
bouncing-ball states can be derived. An analysis of the trace of the transfer operator unveils
the breakdown of the Gutzwiller periodic-orbit formula for unstable periodic orbits close to
the bouncing-ball family. In section 4, we develop the concept of a ‘semiclassical island of
stability’ surrounding the marginally stable bouncing-ball family in phase space and discuss
the semiclassical limit of the bouncing-ball spectrum.

2. The bouncing-ball orbits

In this section, the bouncing-ball contribution to the quantum spectral determinant

D(E) = exp
∫ E

0
dE′ TrG(E′) =

∏
n

(E − En) (1)

is derived. The{En} denote the real quantum eigenvalues of the system. Following [22, 23],
the Green’s function for the quarter-stadium billiard, figure 2, is divided into a bouncing-ball
part and the rest,

G(q, q ′, k) = Gbb(q, q
′, k)+Gr(q, q

′, k) (2)

where k = √2mE/h̄. The bouncing-ball contribution is restricted toq, q ′ inside the
rectangle and contains, in semiclassical approximation, all paths fromq to q ′ not reaching
the circle boundary or bouncing off the vertical line in the rectangle. The classical paths
correspond essentially to free motion, and the bouncing-ball Green’s function,Gbb, can be
written as an infinite sum over Hankel functions (plus phases due to hard-wall reflections).
The trace then has the form [22]

TrGbb(k) = gbb(k) = −i
ab

2
k + i

a

2
− iabk

∞∑
n=1

H
(1)
0 (2bkn)+ lim

ε→0

abk

2
N0(εk) (3)
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wherea is the length of the rectangle,b denotes the radius of the circle andH(1)
0 is the Hankel

function of the first kind. The real part of the trace diverges due to the logarithmic singularity
of the Neumann function,N0, at the origin. This kind of divergence is a well known
phenomenon for the trace of Green’s functions and can be regularized, e.g. by defining
g̃bb(E) = gbb(E) − Re[gbb(E0)] for E0 fixed [27, 28]. Note, that the same regularization
techniques have to be applied for the true quantum traceg(E) =∑n(E−En)−1 and are thus
not an artefact of the semiclassical approximation. We now move directly to the integrated
trace, which reads

Igbb(k) =
∫ k

0
dk′g̃bb(k

′) = Bbb(k
2)− iπN̄bb(k)− i

ak

2

∞∑
n=1

1

n
H
(1)
1 (2kbn) (4)

≈ Bbb(k
2)− iπN̄bb(k)− i

a

2

√
k

πb

∞∑
n=1

1

n3/2
e2ikbn− 3

4 iπ (5)

and the asymptotic form of the Hankel function has been used in the last step. The sum in
(5) is of the same kind as the contribution of a periodic orbit family in an integrable system
(here the rectrangle) as derived by Berry and Tabor [3], and Keating and Berry [29]. The
real part of the non-oscillating contribution is a function ofk2 only,

Bbb(k
2) = ab

4π
k2(logk2− 1)+ ab

2
βk2+ a

b

π

12
. (6)

The real parameter,β, originates from the regularization and has the form

β = − logk0

π
−
∞∑
n=1

N
(1)
0 (2bk0n) with k0 =

√
2mE0h̄. (7)

The imaginary part is the bouncing-ball contribution to the mean level staircase function

N̄bb(k) = ab

4π
k2− 2a

4π
k. (8)

The termBbb(k
2) is of the general form as derived in [28] for arbitrary billiards with compact

domain, i.e.

B(k2) = A

4π
k2(logk2− 1)+ βk2+ γ logk2+ c (9)

whereA corresponds to the volume of the billiard andβ, γ and c are real constants.
Note, that the logarithmic singularity fork → 0 in (9) is absent in (6). The sum in (4)
is convergent on the whole complexk plane (after analytic continuation for Im(k) < 0).
The functionIgbb(k) is free of singularities and analytic everywhere apart from the lines
Re(k) = mπ/b, m integer, where it exhibits square-root cusps. The dominant oscillation
introduced through the bouncing-ball orbits is clearly visible in the oscillatory part of the
level staircase function [21, 23], and agrees with the prediction (4). The bouncing-ball part,
however, does not contribute to individual eigenvalues. The spectral determinant (1) can
be factorized according to

D(k) ≈ Dbb(k)Dr(k) with Dbb(k) = eIgbb(k) (10)

and the bouncing-ball contribution,Dbb(k), is a function which has no zeros in the whole
complexk plane. It gives rise to oscillations in the modulus of the spectral determinant

with an amplitude growing like exp
(
a
2

√
k
πb

)
and a periodπ/b, but it does not influence the

individual zeros. The bouncing-ball contributions to the spectral determinant can thus be
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Figure 1. The modulus of the boundary integral spectral determinant before (a) and after (b)
dividing out the bouncing-ball part, equation (10), here fora = 5, b = 1; (in additionDbb(k) is
plotted in (a)). Thek interval shown contains about 370 energy levels, which are the real zeros
of the spectral determinant.

divided out without losing information about the spectrum. This can be demonstrated by
considering the boundary integral determinant

Dbim(k) = det(1−K(q, q ′, k)) (11)

where K is the boundary integral kernel defined forq and q ′ on the boundary of
the billiard, (for details see [30]). The functionDbim(k) has the same zeros as the
exact spectral determinantD(k), but may differ otherwise. Especially, the smooth part
exp(B(k2) − iπN̄(k)) is absent in the boundary integral determinant. This term originates
from the zero length limit in the Green’s function and is thus a pure volume effect.
The modulation due to the bouncing-ball contribution is clearly present inDbim(k), see
figure 1(a). The large overall oscillation of the amplitude covers seven orders of magnitude
for k ≈ 30 but is completely removed by factorizing out the bouncing-ball part,Dbb(k), see
figure 1(b). Note, that the boundary integral determinant, after factorization, exhibits cusps
at k = mπ/b, and is thus non-analytic there.

As a somewhat paradoxical result, we obtain that the bouncing-ball family is responsible
for strong modulations in the trace as well as in the spectral determinant. It does not,
however, contribute to individual eigenvalues, and does not explain the regular modulation
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in the level spacing itself. The bouncing-ball family covers a volume of measure zero in
phase space, and is not sufficient to form a support for an eigenfunction alone. (This is
of course true for any invariant family, e.g. in an integrable system.) As a consequence,
the neighbourhood of the bouncing-ball family in phase space must be responsible for the
existence of the bouncing-ball states and for the periodic change in the level spacings leading
to the modulation in the level staircase function. The next section is devoted to a proper
semiclassical analysis of the near-bouncing-ball dynamics.

3. The semiclassical transfer operator

So far, it has been widely believed, that the remainder term in the trace of the Green’s
function (2) as well as in the spectral determinant (10) can, in leading semiclassical
approximation, be described by the Gutzwiller periodic orbit formula [1, 2] or equivalently
by the semiclassical spectral determinant [25]. This belief is confirmed by studies of the
Fourier transform of the (smoothed) quantum spectrum, which agrees reasonably well with
periodic orbit predictions [21–23]. The semiclassical expression for the determinant, valid
for systems with unstable, isolated periodic orbits only, has the form

D(E) = A(E)e−iπN̄(E) exp

(
−
∑
p

∞∑
r=1

exp(irSp(E)/h̄− irαpπ/2)

r
√| det(I −M r (E)p)|

)
. (12)

The sum is taken here over all (single repeats of) periodic orbits of the system. The classical
actionSp =

∮
pdq is taken along the periodic orbit, andM denotes the reduced Monodromy

matrix, which describes the linearized dynamics in phase space perpendicular to the periodic
orbit on the energy manifold. The Maslov index,α, counts twice the full rotations of the
(real) eigenvectors ofM around the orbit (plus twice the number of hard-wall reflections).
The prefactors in front of the periodic-orbit product are due to the zero-length limit in the
Green’s function in a similar way as derived in (6) and (8) and do not contribute to the
spectrum. Equation (12) is formal in the sense that it is not convergent for real energies
[31] and suitable resummation techniques have to be applied [32, 24, 33, 34]. Thereby, the
exponential function containing the periodic orbit sum is expanded and the resulting terms
are regrouped by ordering them with respect to the total action or the total symbol length
(after choosing a suitable symbolic dynamics). Such techniques have been shown to work
successfully for hard-chaos systems.

In the following, I will show that formula (12) is not valid for periodic orbits within a
phase-space region surrounding the bouncing-ball family and will give explicit bounds for
this area.

3.1. The Bogomolny transfer operator

Our starting point is the Bogomolny transfer operator [26] which is a semiclassical
propagator for a classical Poincaré map. It has the form

T (q, q ′, E) = 1

(2π ih̄)(f−1)/2

∑
cl.trq→q ′

√∣∣∣∣ ∂2S

∂q∂q ′

∣∣∣∣eiS(q,q ′,E)/h̄−iνπ/2 (13)

whereq, q ′ are points on an appropriate Poincaré surface of section in coordinate space and
f denotes the number of degrees of freedom. The sum has to be taken over all classical
paths fromq to q ′ crossing the Poincaré surface only once with momentum pointing in the
direction of the normal to the surface. Again,S(q, q ′;E) denotes the classical action along
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the path for fixed energyE. For billiard systems, it equalsk times the length of the classical
trajectory. The integer number,ν, counts the number of caustics inq space (plus again
twice the number of hard-wall reflections). The semiclassical eigenvalues are given by the
zeros of the determinant det(I − T (q, q ′, E)). Evaluating the determinant in a cumulant
expansion using the Plemelj–Smithies formula [26, 37]

det(I − T ) =
∞∑
n=0

(−1)n
αn(T )

n!

= 1− TrT − 1
2(TrT 2− (TrT )2)− · · · (14)

with

αn(T ) =

∣∣∣∣∣∣∣∣∣∣

TrT n− 1 0 . . . 0
TrT 2 TrT n− 2 . . . 0
TrT 3 TrT 2 TrT . . . 0
...

...
...

...
...

TrT n TrT n−1 TrT n−2 . . . TrT

∣∣∣∣∣∣∣∣∣∣
(15)

provides the connection to the expanded periodic-orbit formula (12) using the iterates of
the map as an expansion parameter. Periodic orbits appear as stationary phase points in the
various traces and the amplitudes are recovered using the relation

1√| det(I −M )| =
√∣∣∣∣∂2S(q, q ′)

∂q∂q ′

∣∣∣∣
q=q ′

/√∣∣∣∣∂2S(q, q)

∂q2

∣∣∣∣. (16)

The stationary phase approximation demands periodic orbits to be unstable and sufficiently
isolated. The last condition will be discussed in detail later. Note that the determinant and
the cumulant expansion (14) are well defined only if the operatorT is trace class, which
means essentially, that the trace ofT exists and is finite in any basis. (For further details
see [37], other expansion methods using Fredholm theory are discussed in [41].)

The Bogomolny transfer matrix method has been shown to work satisfactorily for hard-
chaos [42], mixed [42, 43] as well as integrable [38, 30, 42] systems, and has also been
applied successfully to the stadium taking the billiard boundary as the Poincaré surface of
section [30]. We seek now a Poincaré map which reflects the whole dynamics but excludes
the bouncing-ball orbits in order to obtain a semiclassical expression for the remainder,Dr ,
in (10). Choosing the intersection between the rectangle and the circle (the vertical dotted

Figure 2. The quarter-stadium billiard; the trajectory shown corresponds to(m, l) = (−1, 1).
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line in figure 2) fulfils this criteria. The transfer operator corresponding to this Poincaré
section takes on a particularly simple form for both the near-bouncing-ball limit and the
whispering-gallery limit. It is thus preferable to other possible choices such as the circle
boundary for example.

3.2. The classical Poincar´e map

In the following, I will restrict attention to the stadium withb = 1. The spectrum for
generalb is obtained by simple scaling relations. I will consider the classical Poincaré map
(x, φ)→ (x ′, φ′) with x ∈ [0, 1] being the coordinate on the Poincaré plane starting from the
bottom line. The angleφ ∈]−π/2, π/2[ corresponds to the momentum vector pointing away
from the circle measured in the clockwise direction, see figure 2. (The corresponding energy-
dependent area-preserving map is obtained in the coordinates(x, px) = (x,

√
2mE sinφ).)

The map can be written as

x̄ = (−1)m
[
x + 2a tanφ −

(
m+ 1− (−1)m

2

)]
φ̄ = (−1)mφ with m 6 x + 2a tanφ < m+ 1

θ = arcsin(x̄ cosφ̄)

φ′ = φ̄ + 2(l + 1)θ − lπ with l 6
π
2 + φ̄ + θ
π − 2θ

< l + 1

x ′ = x̄ cosφ̄

cosφ′
.

(17)

The coordinates(x̄, φ̄) correspond to the first return at the Poincaré plane with the
momentum pointing toward the circle. The angleθ is the angle of incidence for reflections
on the circular section of the boundary; see figure 2.

The length of a trajectory for one iteration of the map is

L(x, φ) = 2a + cos(φ̄ + θ)
cosφ

+ 2l cosθ + cos(φ′ − θ)
cosφ′

. (18)

The general expression for the Monodromy matrix is given in appendix A. The integer
numbersm ∈ [−∞,∞] correspond to|m| reflections on the bottom or top line in the
rectangle, the sign ofm equals the sign ofφ. The indexl ∈ [0,∞] counts the number of
free flights in the circle and corresponds to(l + 1) bounces with the circle boundary. The
total number of bounces,ntot, with the billiard boundary is thus

ntot = |m| + (l + 1)+ 2. (19)

The map automatically provides a symbolic coding. It should be noted that the code does
not form a ‘good’ symbolic dynamics in the sense of Markov partition theory. Multiple
iterates of the map are not uniquely encoded by symbol strings. . . , (m, l)i, (m, l)i+1, . . . , i.e
the partition is not generating. In addition, there is strong pruning, i.e. some of the possible
symbol strings are not realized by trajectories of the map. The symbols defined by the map
(17) do, however, reflect the important contributions of the dynamics to a semiclassical
description as will be seen in the next section. The problem of finding a ‘good’ symbolic
dynamics for the stadium [39, 40] might be a consequence of this fundamental dilemma.

The bouncing-ball limit,|m| → ∞, can be reached only forl = 0 or 1, but for allx on
the Poincaŕe surface of section. The opposite limit,l →∞ (the whispering-gallery limit),
is possible only form = 0 or 1 and a decreasingx interval of starting points. Together,
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Figure 3. Member of the periodic orbit families approaching the bouncing-ball orbits: (a)
(m, l) = (10, 0) and (b) (m, l) = (−11, 1).

there are four infinite series of fixed points of the map which are present for all parameter
valuesa. In the l = 0 case,m must be even and positive. The corresponding periodic-orbit
family (2n, 0), see figure 3(a), has initial conditions

x(2n,0) = 0 φ(2n,0) = arctan(n/a) with n = 0, 1, . . . (20)

and

L(2n,0) =
√
(2n)2+ (2a)2+ 2 det(I −M(2n,0)) = 2L(2n,0) − 4. (21)

Note that det(I −M ) grows linearly with the lengthL and thus with the order parameter
n which is in contrast to exponential growth for strictly hyperbolic dynamics.

The family with l = 1 approaching the bouncing-ball orbits are formed by periodic
orbits which start in a corner of the rectangle and bounce off perpendicular to the bottom
line in the circle, see figure 3(b). In this case,m must be odd and negative, i.e.m = −2n−1.
The angle of incidenceθ for the bounce of the circle fulfils the condition

2 sin2 θ + 1

a
(2n cosθ + 1) sinθ − 1= 0 n = 0, 1, . . . (22)

with approximate solution

θn = a

2n+ 1
+O(n−3).

The starting conditions on the Poincaré surface are

x(−2n−1,1) = 1

2 cosθn
φ(−2n−1,1) = −π

2
+ 2θn < 0. (23)

One obtains for the length of the periodic orbits

L(−2n−1,1) = 2
√
(cosθn + n)2+ (sinθn + a)2+ 2 cosθn (24)

=
√
(2n)2+ (2a)2+ 4− a2

2n2
+O(n−3). (25)

and for the weight

det(I −M(−2n−1,1)) = 4

(
L(−2n−1,1)

cosθn
− 4

)
= 8n+ 5

a2

n
+O(n−2) (26)

(see also appendix A). Again, the determinant increase linearly with the length of the
periodic orbits.

An analysis of the periodic orbits(0, l) and (1, l) approaching the whispering-gallery
limit l→∞ is provided in appendix B.



2872 G Tanner

3.3. The Poincar´e map in the bouncing-ball limit

The map (17) can be considerably simplified both in the bouncing-ball limit and in the
whispering-gallery limit. The latter is postponed to appendix B.

For trajectories(m, 0), one has to distinguish between four different cases:(m >
0; even), (m < 0; even), (m > 0; odd) and(m < 0; odd). One obtains for(m > 0; even)

x ′m =
x̄

1− 2x̄

[
1− 4a2

d2
m

x̄(1− x̄)2
1− 2x̄

]
+O(m−4) (27)

φ′m =
π

2
− 2a

dm
(1− 2x̄)

[
1− 4

3

a2

d2
m

1− x̄(3− x̄2)

1− 2x̄

]
+O(m−5) (28)

with

dm = 2a tanφ = m− x + x̄.
The length of a trajectory is

L(x, φ) = dm + 2
(1− x̄)2
1− 2x̄

+ 2a2

dm
− 4a2

d2
m

x̄2(1− x̄)2
(1− 2x̄)2

− 2a4

d3
m

+O(m−4) (29)

with x̄(x, φ) = x+ 2a tanφ−m > 0. Note thatx ′ depends at leading order onx̄ only (and
not independently on bothx andφ). For the transfer operator (13), we need the length of
a trajectory as function of the initial and final pointsx andx ′. One obtains

L(x, x ′) = m− x + x ′ + 2+ 2a2

dm

[
1− a2

d2
m

]
+O(m−4) (30)

=
√
d2
m + (2a)2+ x ′ −

x ′

1+ 2x ′
+ 2+O(m−4) x, x ′ ∈ [0, 1] (31)

with

dm(x, x
′) = m− x + x ′

1+ 2x ′
. (32)

The length of a trajectory after one iteration of the map is thus given by its length in
the rectangle plus corrections which depend onx ′ only (up toO(m−4)). The mixed second
derivatives ofL(x, x ′) showing up in the transfer operator (13) are

∂2L

∂x∂x ′
= − 4a2

(d2
m + (2a)2)3/2(1+ 2x ′)2

+O(m−5). (33)

The length spectrum for the Poincaré map withm odd or negative is obtained by the
following replacements in equations (30)–(33):

(m < 0; even) m→−m x →−x x ′ → −x ′ x ∈ [0, 1]; x ′ ∈ [0, 1
3]

(m > 0; odd) m→ m+ 1 x ′ → −x ′ x ∈ [0, 1]; x ′ ∈ [0, 1
3]

(m < 0; odd) m→−m− 1 x →−x x ∈ [0, 1]; x ′ ∈ [0, 1].

In a similar way, the approximate map for the(m, 1) trajectories can be constructed. In
the bouncing-ball limitm→∞ only (m > 0; even) and (m < 0; odd) is possible. Again,
we discuss first the case (m > 0; even), for which we obtain

x ′m =
x̄

4x̄ − 1

[
1+ 8a2

d2
m

x̄

4x̄ − 1
(5x̄2− 4x̄ + 1)

]
+O(m−4) (34)

φ′m = −
π

2
+ 2a

dm
(4x̄ − 1)

[
1− 4

3

a2

d2
m

2x̄(3− x̄2)− 1

4x̄ − 1

]
+O(m−5) (35)
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with

dm = m− x + x̄ = 2a tanφ.

The length of the trajectory as a function of the initial and final points is

L(x, x ′) = m− x − x ′ + 4+ 2a2

dm

[
1− a2

d2
m

]
+O(m−4) (36)

=
√
d2
m + (2a)2− x ′ −

x ′

4x ′ − 1
+ 4+O(m−4) (37)

with

dm(x, x
′) = m− x + x ′

4x ′ − 1
x ∈ [0, 1]; x ′ ∈ [ 1

3, 1] (38)

and

∂2L

∂x∂x ′
= − 4a2

(d2
m + (2a)2)3/2(4x ′ − 1)2

. (39)

We recover the (m < 0; odd) case by replacing

(m < 0; odd) m→−m− 1 x →−x x ∈ [0, 1]; x′ ∈ [ 1
3, 1]

in equations (36)–(39).

3.4. The transfer operator,T , in the bouncing-ball limit

The main advantage of a semiclassical description of quantum mechanics is to study directly
the influence of (parts of) the classical dynamics on quantum phenomena. The importance of
the near-bouncing-ball dynamics on the quantum spectrum can be understood by analysing
theT operator obtained from the Poincaré map in the bouncing-ball limit, see section 3.3.

TheT operator in the bouncing-ball limit can be written as

T (x, x ′; k) = T0(x, x
′, k)+

{
T0(−x,−x ′, k) if 0 6 x ′ 6 1

3

T1(x, x
′, k) if 1

3 < x ′ 6 1
(40)

with

T0(x, x
′) = 2a

√
k

2π i

e
ik
(

2+x ′− x′
1+2x′

)
−i 3

2π

1+ 2x ′

∞∑
n=0

[
eikL−0 (n)

(L−0 (n))3/2
− eikL+0 (n)

(L+0 (n))3/2

]

T1(x, x
′) = −2a

√
k

2π i

e
ik
(

4−x ′− x′
4x′−1

)
−i 3

2π

4x ′ − 1

∞∑
n=0

[
eikL−1 (n)

(L−1 (n))3/2
− eikL+1 (n)

(L+1 (n))3/2

] (41)

whereL±0/1(n) is defined as

L±0 (x, x
′; n) =

√(
2n± x + x ′

1+ 2x ′

)2

+ (2a)2 (42)

L±1 (x, x
′; n) =

√(
2n± x + x ′

4x ′ − 1

)2

+ (2a)2. (43)

Here, the lower index corresponds tol = 0 or 1. The upper index− or + distinguishes
between contributions originating from trajectories withm even or odd. Note that trajectories
in the bouncing-ball limit have only one caustic inq space inside the circle before returning
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Figure 4. The absolute value of 1−TrT for a = 5 together with the quantum eigenvalues(+)
and the quasi-EBK solutions(1), see equation (60) in section 3.6. The bouncing-ball states are
specially marked by arrows.

to the Poincaŕe plane both forl = 0 and 1. The additional phases from hard-wall reflections,
see (19), have already been incorporated.

The operator (40) is the main result of this paper. It contains the dynamics in
the stadium in a somewhat counterintuitive way. All contributions of trajectories with
more than two reflections on the circle boundary are neglected. In addition, the short
orbits for l = 0 or 1 are represented least accurately. This seems to contradict our
common understanding of a semiclassical treatment of quantum mechanics for classically
‘chaotic’ systems. The quantum spectrum for hard-chaos systems is expected to be built
up collectively by all unstable periodic orbits and the shortest periodic orbits are supposed
to dominate an expansion of the spectral determinants (12) or (14). The stadium billiard
possesses, however, a subset of regular eigenstates, the so-called bouncing-ball states, which
show a nodal pattern very similar to the chequerboard pattern obtained for the unperturbed
rectangular billiard. It is this subset of states which can be treated by the approximate
transfer operator (40) alone. This is shown in figure 4. The leading terms in the cumulant
expansion (14), i.e. det(I − T (k)) ≈ 1 − TrT (k), is plotted here as a function ofk.
The quantum eigenspectrum of the quarter stadium, marked by crosses on thek axis,
is obtained from the boundary integral method. The eigenvalues having bouncing-ball
nodal pattern are emphasized by arrows. (The bouncing-ball states have been identified
by inspecting individual wavefunctions.) The minima of(1 − TrT (k)) coincide very
well with the eigenvalues corresponding to bouncing-ball states found by our subjective
criteria. TheT operator constructed from a Poincaré map in the bouncing-ball limit fails
in other regions of the spectrum. Some of the states are either completely ignored (see
e.g. atk ≈ 7.6) or they appear as doublets, where theT operator expects only a single
state, (see, e.g. aroundk ≈ 6.7). The latter case corresponds to a bouncing-ball state
interfering with a nearby state originating from the non-bouncing-ball dynamics. By using
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higher terms in the cumulant expansion (or even the full determinant), non-bouncing-ball
behaviour can partly be resolved. A quantization of the full spectrum cannot be expected,
as important parts of the dynamics have been neglected. Note, that the trace ofT has a
cusp at Rek = mπ,m = 1, 2, . . ..

In the next section, the influence of periodic orbits which appear as stationary phase
points in the trace of theT operator will be studied in more detail.

3.5. The trace ofT and periodic orbit contributions

Let us first concentrate on the trace of theT0 part in the transfer operator (40) which contains
contributions from trajectories with only one bounce on the circle boundary. The result for
TrT1 will be given later. Expanding the length termsL±0 (n) up toO(n−2) in the exponent
and to leading order in the amplitude, see (30), (33), yields

TrT0(k) =
∞∑
n=0

TrT0,n(k)

= a

2

√
k

iπ

∞∑
n=0

1

n3/2
e

ik
(√

(2n)2+(2a)2+2
)
−i 8

2π

×
∫ 1

−1/3
dx

1

1+ 2x

[
exp

(
ik
a21−

2n2

)
− exp

(
2ikx − ik

a21+

2n2

)]
(44)

with

1±(x) = x ± x

1+ 2x
.

The phases in front of the trace integrals correspond to the length of the periodic orbits in
the family (m, l) = (2n, 0), see (21). The negative region of integration comes from the
secondT0 term in (40).

The dominant contribution to each integral is given by the first term containing1−

which derives from trajectories with an even number of reflections in the rectangle. It is
stationary forx = 0, i.e. at the starting point of the periodic orbits (20). This becomes
obvious after the change of variables,∫ 1

−1/3
dx

1

1+ 2x
exp

(
ik
a21−

2n2

)
= 2

∫ 1/
√

3

0
dy

1√
1+ y2

exp

(
ik
a2y2

n2

)
. (45)

Approximating the integral straightforward by stationary phase, i.e. shifting the limits of
integration to infinity, would lead to the standard periodic orbit amplitudes using (16),
here for the periodic orbit family(m, l) = (2n, 0), see (21). The width of the Gaussian
is, however, increasing withn and the finite limits of integration become important for
n > a

√
k/π . The individual contributions to the sum (44) thus show ak-dependent

transition, i.e.

TrT0,n(k)→ 1

2
√
n

e
ik
(√

(2n)2+(2a)2+2
)
−i 3π

2 if n� a

√
k

π
(46)

→ a

2

√
k

π

log 3

n3/2
e

ik
(√

(2n)2+(2a)2+2
)
−i 7

4π if n� a

√
k

π
. (47)

Contributions from short trajectories in (46) have the Gutzwiller form for isolated unstable
periodic orbits with amplitudes| det(I −Mn)|−1/2 ≈ n−1/2 (see (21)) being independent of
k. In the other limitn� a

√
k/π , we obtain eika

2y2/n2 ≈ 1 within the integration boundaries
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and the stationary phase approximation is no longer applicable.All trajectories in the range
of integration give essentially the same contribution to the trace as the periodic orbit itself.
A whole manifold of orbits build up the semiclassical weights in the trace in the same
manner as manifolds of periodic orbits on tori with commensurable winding numbers do
in a semiclassical treatment or in integrable systems [4]. In our treatment as well as in the
Berry–Tabor approach [4], the trace can be performed directly and no additional stationary
phase approximation is needed (in contrast to the Gutzwiller formula). A comparison of (47)
with the Berry–Tabor weights obtained for contributions in the rectangle, as in equation (5)
for example, unveils the similarity. Note that the weights are now explicitlyk dependent and
decrease liken−3/2. The transition from ‘semiclassically integrable’ to ‘chaotic’ behaviour
affects mainly the amplitudes. The phase is in both cases essentially given by the length of
the periodic orbit (21).

The conceptually different treatment for integrable and hard-chaos systems can thus be
rediscovered when studying intermittent dynamics near marginally stable boundaries. The
contributions to the trace interpolate smoothly between the two extremes, the transition
region itself is, however, ¯h (or k) dependent. To the best of my knowledge, this has been
explicitly shown here for the first time. The number of terms corresponding to contributions
of isolated periodic orbits increases like

√
k, the turnover occurs for

n0 ≈ log 3a

√
k

π
. (48)

The transition is indeed rather sharp, as can be seen in figure 5. The modulus of TrT0,n

is plotted here versusn for different k values. The integral (44) has been calculated
numerically using the full-length formula (31). The oscillations occurring in the transition
region correspond to the phase change from 3π/2 to 7π/4 from equations (46) and (47).

The contributions to the trace from the second term in the integral (44) vanish like
1/
√
k for largek. They become, however, important for smallk, especially for thek region

Figure 5. The modulus of TrT0,n as function of the indexn for different k values showing a
k-dependent transition from ‘chaotic’ to ‘integrable’ behaviour with increasingn; the full curve
corresponds to|I −Mn)|, see (21), expected for isolated periodic orbits, the broken curve is
the k-dependent asymptotic form (47).
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below the ground state.
In a similar way, the leading contributions to theT1 operator in (40) (deriving now

from theL+1 part, see (43), and thus from trajectories withm < 0; odd) show a transition

TrT1,n(k)→ 1

2
√

2n
e

ik
(√

(2n)2+(2a)2+4− a2

2n2

)
if n� a

√
k

π
(49)

→ a

4

√
k

π

log 3

n3/2
e

ik
(√

(2n)2+(2a)2+4− a2

2n2

)
i 7

4π if n� a

√
k

π
. (50)

The phase is again essentially given by the lengths of periodic orbits from the family
(m, l) = ((−2n − 1), 1), see (25). Ak-dependent transition occurs in the amplitude as in
(46) and (47) at a critical summation index approximately given by the estimate (48).

Our analysis suggests that a marginally stable boundary as provided here by the
bouncing-ball family is smoothly connected to the outer ergodic regions in a semiclassical
treatment. We expect that this behaviour is generic for systems with a mixed-phase space
structure. Stable islands are surrounded by a ‘semiclassically stable’ layer and there
is a smooth transition for semiclassical contributions from both sides of the classically
disconnected regions. This effect has already been observed by Bohigaset al [5, 44]. These
authors compared the true quantum spectrum in the quartic oscillator with an approximate
EBK quantization of a stable island in this system. They were able to attach quantum
states to EBK results even beyond the boundary given by the stable islands. This indicates
an effective enlargement of the stable region into its ‘chaotic’ neighbourhood by quantum
effects. Our analysis provides a consistent semiclassical interpretation of this phenomenon.

The results so far are based on the particular choice of the Poincaré surface of section.
The approach presented here is opposite to a semiclassical quantization of the system on
the billiard boundary. The trace of the transfer operator contains then only contributions
from the shortest periodic orbits, especially from the marginal stable family. The Bogomolny
method works for this section as well [30]. Note, however, that corrections to the Gutzwiller
formula due to intermittency are introduced here through non-classical trajectories, when
approximating the various traces by stationary phase. Note also that a naive summation
using the Gutzwiller periodic orbit weights (46) for the stadium would give contributions
of the form

∑∞
n=1 n

−1/2eikLn which lead to poles atk = mπ . It is then−3/2 fall off for large
n that prevents the trace as well as the spectral determinant from diverging at these points.

One might speculate why the corrections found here have not been observed in such a
well studied system like the stadium billiard. Previous studies were mainly based on Fourier
transformation of the quantum spectrum. The Fourier transform exhibits peaks at positions
corresponding to the length of periodic orbits. The Fourier spectrum is most sensitive
to phases of semiclassical contributions and only the shortest periodic orbits are resolved
when dealing with smoothed spectra or a finite energy interval. Intermittency, as introduced
through the bouncing-ball family, affects mainly the amplitudes and contributions of long
trajectories. In addition, ak dependence of the amplitudes, as in (47) and (50), is washed out
by the Fourier integration. Fourier transformation is thus very insensitive to the influence of
marginally stable behaviour. In the next section, I will show that the bouncing-ball spectrum
indeed originates from a series of orbits approaching the bouncing-ball family and that there
is no natural length cut-off for trajectories contributing dominantly to the transfer operator.
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3.6. Discrete representation of the transfer operator and quasi-EBK formulae

For a further analysis of the operator (40), we proceed in a very similar way to [38]. The
infinite sums in (41) are convergent for Im(k) > 0 and may be expressed as

∞∑
n=0

eikL±0 (n)

(L±0 (n))3/2
= 1

2

eikL±0 (0)

(L±0 (0))3/2
+

+∞∑
m=−∞

∫ ∞
0

dn
eikL±0 (n)−2π imn

(L±0 (n))3/2
(51)

using Poisson summation [35]. The integral representation (51) provides an analytic
continuation of the kernel (40) for Im(k) < 0 after rotating the axis of integration
dn→±idn [35, 36].

For k real, the integrals in (51) can be evaluated by stationary phase. The prefactors
decrease not faster than algebraically and thus vary slowly compared to the phase. The
stationary phase condition yields

k
∂L±0 (n)
∂n

− 2πm = 0. (52)

The solution of (52),

nm = 1

2

[
2am√

k2/π2−m2
∓ x − x ′

1+ 2x ′

]
(53)

are real form 6 k/π only. The saddles form < 0 give no contribution due to the limits
of integration in (51). Note, that the sum is not necessarily dominated by short orbits.
On the contrary, infinitely long trajectories give the main contributions to the sums in (41)
when k approachesmπ from above. The singularities atk = mπ are linked to the cusps
appearing in the bouncing-ball contribution to the integrated trace (4) when summing over
all repetitions of the marginal stable family.

By skipping the slowly varying first term on the left-hand side of (51), i.e. neglecting
again short-orbit contributions, one obtains in the stationary-phase approximation

T0(x, x
′) ≈ −i

e
2ki
(

1+ x′2
1+2x′

)
+i π2

1+ 2x ′

∞∑
m=1

e2π ia
√
k2/π2−m2

ei mπx
′

1+2x′ sin(mπx)

T1(x, x
′) ≈ i

e
4ki
(

1− x′2
4x′−1

)
+i π2

4x ′ − 1

∞∑
m=1

e2π ia
√
k2/π2−m2

ei mπx
′

4x′−1 sin(mπx).

(54)

The amplitudes are now no longerk dependent. The sum overm disappears when writing
the kernel (40) in the basisϕn =

√
2 sin(πnx), n = 1, 2, . . ., i.e.

Tm,n =
∫ 1

0
dx
∫ 1

0
dx ′ ϕm(x)T (x, x ′)ϕn(x ′)

which leads to the discrete transfer matrix

Tm,n(k) ≈ e2π i
(
a
√
k2/π2−m2+ k

π
+ 1

4

)
Rm,n(k). (55)

TheR-matrix is given as

Rm,n(k) = −i
∫ 1

−1/3
dx ′ e2kix ′2/(1+2x ′)eimπ x′

1+2x′
sin(nπx ′)
1+ 2x ′

+ i
∫ 1

1/3
dx ′ e2ik(1−2x ′2/(4x ′−1))eimπ x′

4x′−1
sin(nπx ′)
4x ′ − 1

(56)
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and is independent of the billiard lengtha. Applying the unitary transformation

T̃ = U−1TU with Um,n = eaπ i
√
k2/π2−n2

δn,m (57)

leads to the more symmetric form

T̃m,n(k) ≈ e
2π i

[
a
2

(√
k2/π2−n2+

√
k2/π2−m2

)
+ k
π
+ 1

4

]
Rn,m(k). (58)

The transfer matrix (58) is now essentially finite with an effective dimension

dimeff = [k/π ] (59)

where [ ] denote the integer part ofk/π . Formula (59) corresponds exactly to the estimate for
the dimension of theT operator given by Bogomolny [26] for the Poincaré surface chosen
here. Neither the dimension nor theR-matrix in (56) depend on the billiard parameter
a which enters only through the phase in (55), (58). TheT operator derived from the
Poincaŕe map in the bouncing-ball limit is expected to reproduce best the bouncing-ball
states. The determinant can be approximated by its leading term in the cumulant expansion
(14), i.e. det(I − T ) ≈ 1 − TrT . The phases in front of theR-matrix in (58) yield
a quantization condition for the bouncing-ball spectrum. TheR-matrix acts as a filter
determining thek intervals which allow for bouncing-ball states in principle. A closer
analysis shows that the diagonal elements,Rmm, are dominant and approximately real in
the regionk ∈ [mπ, (m+ 1)π ]. This leads to an EBK-like quantization condition

a

√
k2

π2
−M2+ k

π
+ 1

4
= M +N

for M = 1, 2, . . . , N = 1, 2, . . . ,
[
a
√

2M + 1+ 5
4

]
. (60)

M and N act as approximate quantum numbers corresponding to bouncing-ball
eigenfunctions with(M − 1) nodal lines perpendicular and(N − 1) nodes parallel to
the Poincaŕe surface. (An additionalM on the right-hand side of (60) is introduced for
convenience.) The cut-off in theN quantum number originates from thek window given
by theR-matrix. The states with fixed quantum numberM are restricted to the interval
k ∈ [Mπ, (M + 1)π ] and differentM series do not overlap.

In table 1, the bouncing-ball eigenvalues (chosen by inspection at the individual
wavefunctions) are compared with the quasi-EBK quantization condition (60) fora = 5.
The EBK solutions are also marked in figure 4. The importance of the additional terms
k/π + 1

4 becomes evident when comparing the results with the spectrum of the rectangle

obtained from the conditiona
√
k2/π2−M2 = N , i.e. k2/π2 = M2+N2/a2.

Note, that theT operator for the rectangle [38] is not recovered in the limita → ∞.
The R-matrix (56) is independent ofa and the circle boundary thus cannot be treated as
a small perturbation even for largea values. The solutions of (60) can approximately be
written in the form

k2
M,N

π2
= M2+ 1

a2

(
N −1N,M − 1

4

)2
(61)

with

1N,M =

√√√√
M2+

(
N − 1

4

a

)2

−M → 0 for M � N

a
.

A rectangular-like spectrum is achieved in the ‘integrable’ limita → ∞, however, in a
very special way. First of all, equation (61) contains an extra phase1

4 originating from
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Table 1. Eigenvalueskqm belonging to bouncing-ball eigenstates compared with the EBK-like
quantization condition (60) fora = 5; hereN andM denote the approximate quantum numbers;
the numbers in brackets correspond to an enumeration of all states in successive order.

m = 1 m = 2 m = 3

N kqm kebk kqm kebk kqm kebk

1 3.190 (1) 3.176 6.309 (11) 6.301 9.441 (29) 9.436
2 3.329 (2) 3.317 6.386 (12) 6.375 9.497 (31) 9.487
3 3.550 (3) 3.547 6.510 (13) 6.505 9.583 (32) 9.576
4 3.835 (4) 3.844 6.683 9.706 (34) 9.701
5 4.170 (5) 4.191 6.896 (16) 6.904 9.860
6 4.542 (6) 4.575 7.162 10.042 (37) 10.049
7 4.942 (7) 4.986 7.423 (19) 7.452 10.245 (39) 10.267
8 5.361 (8) 5.418 7.750 (21) 7.771 10.494 (41) 10.511
9 5.793 (9) 5.865 8.113 10.777

10 6.233 (10) 6.325 8.405 (24) 8.475 11.032 (44) 11.065
11 8.793 (26) 8.855 11.350 (48) 11.373
12 9.201 (28) 9.251 11.697
13 11.982 (53) 12.038

the caustic in the circle, which is not present in the rectangle. In addition, the differentM

series always have a finite cut-off for finitea, see (60). The number of states in a givenM
series increases to infinity only in the limita→∞.

The determinant det(I − T ) is analytic in each strip Rek ∈]mπ, (m + 1)π [, with
m integer, but has a cusp atk = mπ . The non-analytic behaviour is introduced through
infinitely long trajectories contributing in leading order atkπ ≈ m, see equation (53). These
cusps are a consequence of omitting the bouncing-ball contributions, which itself exhibits a
cusp at integer multiples ofπ , see equation (4). The full spectral determinant,D(k) (10),
is analytic and non-analytic behaviour in the bouncing-ball contributions is cancelled by the
near-bouncing-ball dynamics.

Of special interest, however, is the maximal length of trajectories necessary to resolve
the regular part of the quantum spectrum at a given wavenumber,k. Inserting (61) in (53)
lead to an estimate for the trajectory lengths contributing dominantly to the ground state
(M,N = 1) in eachM series, i.e. to the state located next to the cuspk = Mπ . We obtain

Lmax≈ nmax≈ 4

3
a2M ≈ 4

3
a2 k

π
. (62)

This is in contrast to general semiclassical arguments for bound systems leading to a cut-off
for periodic-orbits sums at half the Heisenberg time [24]. This transforms for billiard into
a cut-off in the length spectrum according to

Lmax= πd̄(k) ≈ A

4
k (63)

where d̄(k) is the mean level density andA the area of the billiard. The estimate
(62) scales differently with the billiard parameter,a, and deviates thus especially in the
‘integrable’ limit, a → ∞. The cut-off (63), as derived in [24], is based on two main
assumptions: the overall validity of the Gutzwiller periodic orbit formula and the analyticity
of the semiclassical spectral determinant in a strip containing the real energy axis. Both
assumptions which might be intimately related for bound systems fail here. Note, that this
is not necessarily true for scattering systems. A semiclassical quantization of two examples
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showing intermittency, the helium atom [35] and hydrogen in a constant magnetic field
for positive energy [36], could be achieved within the Gutzwiller approach. However, the
intermittent part of the dynamics introduces in these cases as well regular structures in the
resonance spectrum and non-analyticity in the spectral determinant.

4. The bouncing-ball states

The threshold (48) can be interpreted as the boundary of a region in phase space surrounding
the marginal stable bouncing-ball family. Semiclassical contributions from the dynamics
in this region have a form similar to the one obtained for stable islands [5, 6] or in
integrable systems [3, 4]. The threshold values can be directly translated into momenta
in phase space, i.e.ptx = ±k sinφt with φt ≈ arctan(n0,1/a) ≈ arctan

√
k/π , see

equation (17). Asemiclassically stable islandcan thus be defined covering a phase-space
volumeVreg= k2Ṽreg with

Ṽreg(k) = 4a
∫ π/2

φt

dφ ≈ 4a

(
π

2
− arctan

√
k

π

)

≈ 4a

√
π

k
for k/π � 1.

(64)

The size of the semiclassical island approaches zero in the limitk → ∞ (compared with
the volume of the full phase space). The number of quantum states associated with this
island thus increases like

N̄reg(k) ≈ a
(
k

π

)3/2

+O
(√
k/π

)
(65)

on average. This estimate coincides with the average increase of regular states given by the
EBK quantization condition (60). It exceeds previous results by O’Connor and Heller [46],
who obtained a linear increase ink for the number of localized bouncing-ball states up to
the semiclassical limitk → ∞. Note, that ak3/2 increase in the number of bouncing-ball
states is still consistent with the Schnirelman theorem [47], as the fraction of regular states
compared with all eigenstates approaches zero in the semiclassical limit.

The oscillating part of the level staircase function

Nosc(k) = N(k)− N̄(k) (66)

shows a strong periodic modulation in the stadium, see figure 6(a). Here (N(k) =∑
n θ(k − kn) denotes the quantum level staircase function andN̄ its mean part given

by the Weyl formula [45]).
This modulation coincides with the oscillating part of the bouncing-ball contributions

[21–23], see equation (4). It was shown in section 2 that the bouncing-ball family does
not contribute to individual eigenvalues. From the point of view of individual states in the
spectrum, the oscillatory behaviour in the level staircase function is caused by a periodic
change in the spacings between neighbouring eigenvalues. The spacings are unaffected by
contributions coming from the classical bouncing-ball family.

Taking the concept of a semiclassical stable island seriously, we expect the spectrum of
the stadium billiard to be divided into two different subspectra. The majority of state belong
to the ‘chaotic’ subspace formed by non-localized eigenstates (leaving aside the phenomenon
of scarring along short unstable trajectories). Their number increases on average like

N̄chaos(k) = N̄(k)− N̄reg(k) ≈ A

2π
k2− a

(
k

π

)3/2

+O(k). (67)
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Figure 6. The oscillating part of the level staircase function (a) for the full spectrum and (b)
for the bouncing-ball states only. The full curve corresponds with the oscillating part of the
bouncing-ball contributions, see equation (4).

and the volume of the billiard isA = a + π/4. the level statistics of this subspectrum
is expected to follow the GOE prediction of random matrix theory. The statistics, as
well as the average level repulsion, is then stationary, i.e. independent ofk, in the
unfolded spectrum. The level staircase function is expected to be structureless showing only
‘statistical’ fluctuations around the mean valueN̄chaos(k). The regular subspectrum contains
the eigenstates originating from a quantization of the semiclassical island (64). The coupling
of the dynamics in the ‘semiclassically integrable’ region to the outer classical motion is
weak compared with the mixing in the outer region itself. The level repulsion between
bouncing-ball states and chaotic eigenstates is thus small compared with the coupling among
non-bouncing-ball states themselves. A possible structure in the level staircase function for
the regular states which can be obtained from the EBK quantization condition (60) can,
therefore, survive in the full spectrum. This is indeed the case. The oscillating part of the
EBK level staircase function can be defined with the help of equation (65), i.e.

N reg
osc(k) = NEBK(k)− N̄reg(k). (68)

Here,NEBK(k) is given by the number of levels obtained from the quantization condition
(60) up to a certaink value. The result is shown in figure 6(b) (where the next to leading
terms in N̄reg have been fitted numerically). The functionN reg

osc shows exactly the same
modulations as the full spectrum and coincides also with the oscillating part of the bouncing-
ball contributions. We conclude, thatthe dominant oscillation in the level staircase function
of the full spectrum is caused by a modulation in the density of bouncing-ball states only.
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5. Conclusion

I have shown that the marginally stable bouncing-ball family in the stadium billiard
does not contribute to individual quantum eigenvalues. The result is confirmed by
a semiclassical quantization of the quarter stadium using Bogomolny’s transfer matrix
technique in a representation which excludes the bouncing-ball orbits explicitly. The
regular bouncing-ball quantum states in the spectrum derive semiclassically from the
near-bouncing-ball dynamics alone, and these states follow a simple quantization rule.
The trace of the transfer operator can be approximated by periodic-orbit contributions,
which, however, show an ¯h-dependent transition from Gutzwiller to Berry–Tabor-like
behaviour when approaching the bouncing-ball family. This leads to the concept of a
semiclassical island of stability surrounding the marginal stable family in phase space.
The boundary of this region is explicitly ¯h dependent and the phase-space volume of
the island shrinks to zero (compared with the total volume) in the semiclassical limit
h̄ → 0 (or k → ∞). The quasi-EBK quantization formula can be associated with a
quantization of the semiclassical stable island. The periodic modulations in the level
staircase function can be related to a periodic change in the density of bouncing-ball
eigenstates.

The results demonstrate that averaged dynamical properties like ergodicity and the
positive Liapunov exponent are not sufficient to ensure the applicability of the Gutzwiller
trace formula. The ‘chaoticity’ of the stadium is, in a semiclassical sense, indeed ¯h

dependent, and, for smallk, the billiard is closer to an integrable system than to a hard-chaos
one.

The Gutzwiller periodic orbit weights have to be modified in the whispering-gallery
limit as well, see appendix B. An accumulation of periodic orbits towards a limiting cycle
of finite length has also been found in other systems as in the cardioid billiard [49, 48] in
the wedge billiard [40, 42] and in the anisotropic Kepler problem [1, 50]. We expect that a
careful treatment as outlined in appendix B will solve problems concerning a semiclassical
quantization of these systems.

The results obtained here for the stadium billiard are expected to be generic for
systems with mixed phase-space structure (however complicated by the existence of
island chains and Can–tori surrounding the stable island itself). The stable island
influences the classical dynamics in the outer chaotic region by creating intermittency.
The regular regions appear to be larger than the actual size of the stable island due
to the finite phase-space resolution of quantum mechanics. The findings explain in
a natural way the existence of EBK quantum states associated with regions outside
a stable island as found in [5, 44]. The width of this semiclassically integrable
layer is h̄ dependent. A semiclassical quantization of stable islands as well as the
behaviour of localized wavefunctions on classical boundaries and the description of
tunnelling through dynamical separatrices [5, 12, 13] will be sensitive to this behaviour.
The results derived here indicate a failure of the Berry–Keating periodic orbit
resummation [24] for mixed systems due to the intermittency introduced by the stable
regions.

The work presented here is restricted to semiclassical aspects. The influence of
intermittency on Frobenius–Perron and related classical operators [51, 52] is so far best
described by a so-called BER approximation [53]. The spectra of classical operators are
directly related to classical [54, 55] and semiclassical sum rules [56] as well as to spectral
statistics [56–58] in hard-chaos systems. The influence of intermittency on these results is
still an open issue.
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Author’s note

When completing this article, I became aware of a recent work carried out by Primack
et al [59]. The authors discuss diffraction in the Sinai billiard by analysing the Fourier
transformation of the true quantum spectrum in detail. They could indeed relate all
deviations from the Gutzwiller trace formula to diffraction effects (due to the concave
boundaries in this billiard)exceptfor some of the near-bouncing-ball orbits. The results in
[59] indicate clearly, that the influence of intermittency as discussed in this article can also
be seen directly in the Fourier spectrum.
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Appendix A. Monodromy matrix in the stadium billiard

The Monodromy matrix used in section 3 describes the linearized motion near a classical
trajectory in phase space in a plane perpendicular to the orbit and on the energy manifold.
For billiard systems, this plane is spanned by the local displacement vectors,δq⊥, δp⊥,
pointing perpendicular to the actual momentum of the trajectory. An initial displacement is
thus propagated according to(

δqt⊥
δpt⊥

)
=Mq(t),p(t)

(
δq0
⊥

δp0
⊥

)
whereM depends on the path of the underlying trajectory. For two-dimensional billiards,
one obtains

M (t) =
(

1 L/k

0 1

)
wheret = L/k denotes the time between two bounces at the boundary,L is the length of
the path andk = √2mE. The contribution from a reflection at the boundary is

Mr =
(

1 0
2kκ
cosθ −1

)
whereκ denotes the local curvature of the boundary, andθ is the angle between the orbit and
the normal to the boundary. Thek dependence is scale invariant due to the transformation
δq(k) = δq(k = 1), δp(k) = kδp(k = 1) and we may setk = 1 in what follows.

Bounces on straight lines in the stadium billiard are treated as free flights. The angle
of incidenceθ is the same for all successive bounces of an orbit in the circle. The length
between two of these bounces isL = 2b cosθ whereb denotes the radius of the circle. The
Monodromy matrix forl free flights in the circle interrupted by(l+1) successive reflections
on the circle boundary is thus given by

M =
(−(1+ 2l) 2lb cosθ

2(l+1)
b cosθ −(1+ 2l)

)
. (69)
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Appendix B. The whispering-gallery limit

The whispering-gallery limit of the Poincaré map (17) is formed by trajectories(m, l) with
m fixed andl →∞ in the notation of section 3.2. These orbits approach the boundary of
the billiard with an increasing number of bounces in the circle. Onlym = 0 andm = 1
is possible in the limitl → ∞. I will consider here the casem = 0 andb = 1. The
approximate whispering-gallery map form = 1 follows by analogy.

There is one fixed point for each symbol pair(m = 0, l) with starting conditions

xl = cos

(
π

2

1

l + 1

)
φl = 0. (70)

The angle of incidence,θ , for reflections in the circle is

θl = l

l + 1

π

2
. (71)

The length of the corresponding periodic orbit approaches a constant, i.e.

Ll = 2a + 2(l + 1) cosθl = 2a + π − π
3

24

1

(l + 1)2
+O(l−4). (72)

The Monodromy matrix along the orbits starting on the Poincaré surface of section can be
deduced from appendix A and is

Ml =
(

1 2a
2(l+1)
cosθl

4a(l+1)
cosθl

+ 1

)
. (73)

The periodic orbit weighting factor| det(I −Ml)| is thus

| det(I −Ml)| = 4a
l + 1

cosθl
= 8a

π
(l + 1)2+ π

3
a +O(l−2). (74)

The determinant and thus the largest eigenvalue,3l , of the Monodromy matrix increase
quadratically with the symbol index. The main difference compared with the bouncing-
ball limit is the convergence of the periodLl towards a finite value: the length of the
billiard boundary. The whispering-gallery limit therefore introduces no intermittency. The
Liapunov exponent of periodic orbits,

λl = log3l

Ll
∼ log l

diverges logarithmically and the boundary orbit,(0, l = ∞), is infinitely unstable.
I will show below that the isolated orbit condition is again violated when taking the

trace of the transfer operator. A naive summation of Gutzwiller periodic orbit weights
would overestimate the whispering-gallery contributions considerably. The breakdown of
the stationary phase condition is caused here by the accumulation of periodic orbits, i.e.
stationary phase points, near the billiard boundary.

The phase-space area of starting conditions on the Poincaré surface for trajectories with
the smalll value is centred on the corresponding periodic orbit. Its size shrinks to zero in the
limit l→∞ both in thex andφ coordinate. The transfer operator in the whispering-gallery
limit is thus directly given by the Jacobian matrix (73) in local coordinatesδx = x − xl ,
δφ = φ − φl centred on the fixed points (70). The orbit length is approximately given by
the quadratic form

Ll(δx, δx
′) = Ll + 1

2

(
δx

δx ′

)T
Jl

(
δx

δx ′

)
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with

Jl =
( ∂2L

∂x∂x
∂2L
∂x∂x ′

∂2L
∂x ′∂x

∂2L
∂x ′∂x ′

)
x=x ′=xl

=
( 1

2a − 1
2a

− 1
2a

1
2a + 2(l+1)

cosθl

)
whereLl denotes the length of the periodic orbit. When taking the trace ofT we are
interested in trajectories satisfyingδx = δx ′ which demandsδφ = 0. More important is,
however, the restrictions on theδx-interval, i.e.

−π
2

cosθl
(l + 1)(2l + 1)

6 δx < π

2

cosθl
(2l + 3)(2l + 1)

. (75)

The interval length and thus the integration range decreases likel−3.
The whispering-gallery contributions to the trace of theT operator are

TrTwg =
∞∑
l=0

1√
2π i

√
k

2a
eikLl−i 3

2 (l+1)π2
∫ δ̄

0
dx eik l+1

cosθl
x2

(76)

where the upper and lower limits in (75) have been approximated by their mean value

δ̄ = π cosθl
(2l + 1)(2l + 3)

≈ π2

2

1

(l + 1)(2l + 1)(2l + 3)
.

The interval length decreases faster than (the square root of) the prefactor in the exponent
for increasingl. A stationary-phase approximation is not justified forl → ∞, and we
obtain (as in the bouncing-ball limit) a transition behaviour

TrT lwg →
1√| det(I −M1|

eikLl−i 3
2 (l+1)π for l �

(π
2
k
)1/4

(77)

TrT lwg →
√
πk

a

cosθl
(2l + 1)(2l + 3)

eikLl−i 3
2 (l+1)π−i π4 for l �

(π
2
k
)1/4

. (78)

Note, that the number of periodic orbits which can be treated as isolated stationary-phase
points, increases only at a rate proportional tok−1/4. The contributions for largel fall off
like l−3 and thus faster than in the bouncing-ball case. In addition, there is a cancellation
between the(0, l) and the(1, l) family which show the same overall behaviour but appear
with opposite signs. The whispering-gallery contributions are thus small compared with
near-bouncing-ball contributions, at least fora > 1.
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